Tag Archives: column strength for jacks

Worm Gear Essentials – Column Strength

We’re looking at the elements that help a designer determine the right worm gear screw for an application, based off the excellent white paper “How to Size a Worm Gear Jack” from Ron Giovannone, Director of Application Engineering and Business Operations with Nook Industries in Cleveland, Ohio.

In this post, we look at how Column Strength factors into design considerations.

Column strength is the ability of the lift shaft to hold compressive loads without buckling. A compression load is a load that tends to squeeze the screw axially, which can cause buckling. With longer screw lengths, the column strength of the lift shaft may be substantially lower than nominal jack capacity.

In order to determine the compressibility of a given travel length, you must first determine your mounting condition.

A simplified formula to calculate the column strength in pounds is as follows:

WHERE:

Pcr          =             Maximum Load (lb)

d             =             Root Diameter of Screw (inch)

L              =             Distance between nut and load carrying bearing (inch)

Fc            =             End Fixity Factor

0.25 for mounting condition A

1.00 for mounting condition B

2.00 for mounting condition C

4.00 for mounting condition D

The above formula can only apply when the slenderness ratio (the length divided by the radius of gyration) is not exceeded.

Note: If you can ensure that the load will always be held in tension, you don’t need to consider column loading.

Related tools:

Inch Column Strength Calculator

Metric Column Strength Calculator

Engineering tools to make your work just a little easier.

 

white paper equations

Where can I go to help determine the proper size for my Modular Actuator application?  How much torque can my Ball Screw Assembly manage?  In theory, how long can I expect my Ball Nut to last?

Nook Industries provides a myriad of calculator options as a means of supporting the everyday needs of its customers.  Critical speed, column strength, unit conversion and more,  click here to view engineering support tools.

Engineering_Calculator_Thumbnail

Can’t find what you need?  Call one of Nook Industries’ Application or Sales Engineers, who will discuss your requirements and offer the most suitable system to fulfill your requirements.

Standard Nook Logo

All Your Equations In One Place

calculators

When a linear motion solution is in place & running, it’s easy for the casual observer to think it looks easy. That’s what our industry is all about; making the difficult or even impossible look easy.

But what few people outside the industry realize is just how much work needs to go into the design of a successful linear motion system. The old adage “Measure twice, cut once” doesn’t even begin to cover all the variables, that have to be dealt with.

Now, a new app looks to make that successful design at least a little easier. The Design Guide Pro not only offers selectors for Bevel Gears, Worm Gear Jacks, Bearings and Electric Cylinders, but it also has a calculator section. Here, you’ll find tools to help you establish Energy, Critical Speed, Column Load, Torque and Nut Life as well as helping with Unit Conversions.

All in the palm of your hand. Check it out today by clicking here.

#MakingMotionWork

8 Design Considerations for Worm Gear Jacks

8 Factors You Need to Consider
No matter the type of worm gear jack, machine or ball, there are 8 factors that need to be known and addressed in the design of a solution. In this post, we’ll start looking at these design constraints and how they can determine the sizing, placement and configuration of your worm gear jack screw.

Stainless machine upright1. Load Capacity
The load capacity of the jack is limited by the physical constraints of the components (drive sleeve, lift shaft, bearings, etc.). All types of anticipated loads must be calculated, and be within the rated capacity of the jack. These loads can include: static, dynamic, moving, acceleration/deceleration loads as well as cutting and other reaction forces.

Appropriate design should also be made for shock loads, and should not exceed the rated capacity of the jack.

To accommodate accidental overloads, jacks can sustain the following overload conditions without damage – 10% for dynamic loads, 30% for static.

2. Duty Cycle
Duty cycle is the percentage of time on as opposed to total time. Recommended duty cycles for the two styles of jacks at max horsepower are:
• Ball screw jacks 35% (65% off)
• Machine screw jacks 25% (75% off)

The largest determining factor in calculating duty cycle is the ability of the jack to dissipate heat that builds up during operation. Anything that reduces or increases the generated heat increases or decreases duty cycle accordingly. Additionally, jacks may be limited by their maximum operating temperature (200°F) and not duty cycle.

metric inverted3. Horsepower Ratings
Horsepower values are influenced by many application-specific variables including mounting, environment, duty cycle and lubrication. The best way to determine whether performance is within horsepower limits is to measure the jack temperature. The temperature of the housing near the worm must not exceed 200°F.

The horsepower limit of a jack is a result of the ability to dissipate the heat generated from the inefficiencies of its components, based on intermittent operation. Special consideration should be given for multiple jack arrangements, as total horsepower required depends on horsepower per jack, number of jacks, the efficiency of the gear box or boxes and the efficiency of the arrangement.

If needed horsepower exceeds the maximum for the jack selected, several solutions are possible:
Use a larger jack
• If it is a Machine Screw Jack, look at a comparable Ball Screw Jack
• Operate at a lower input speed
• Use a right angle reducer

inch inverted machine4. Column Strength
Column Strength is the ability of the lift shaft to hold compressive loads without buckling. With longer screw lengths, column strength can be substantially lower than nominal jack capacity.

If the lift shaft is in tension only, the screw jack travel is limited by the available screw material or by the critical speed of the screw. If there is any possibility for the lift shaft to go into compression, the application should be sized for sufficient column strength. Designers should also be aware of effects of side loading. Jacks operating horizontally with long lift shafts can experience bending from the weight of the screw.

If column strength is exceeded, there are several options:
• Change the jack configuration in order to put the shaft in tension
• Increase jack size
• Add a bearing mount for rotating jacks
• Change the lift shaft mounting condition, for example, from clevis to top plate

5. Critical Speed
The speed that excites the natural frequency of the screw is referred to as the critical speed. The critical speed will vary with the diameter, unsupported length, end fixity and rpm of the screw.

Because of the nature of most screw jack applications, critical speed is often overlooked. However, with longer travels, critical speed should be a major factor in determining the appropriate size jack. Since critical speed can also be affected by the shaft straightness and assembly alignment, it is recommended that the maximum speed be limited to 80% of the calculated critical speed.

inch ball6. Type of Guidance
All linear motion systems require both thrust & guidance. Worm gear jacks are designed to provide thrust only and a guidance system should be designed to absorb all loads other than thrust. Preferred systems include hardened ground round shafting or square profile rail.

7. Brakemotor Sizing
To ensure safety, a brakemotor is recommended for worm gear jack screws where there is the possibility of injury. Horsepower requirements will determine the size of the motor, and once selected, verify that the standard brake has sufficient torque to both stop and hold the load.

Lastly, high lead ball screws may require larger, nonstandard brakes to stop the load, to ensure against excessive “drift” when stopping.

8. Ball Screw Life
A major benefit of the use of ball screw jacks is the ability to predict the theoretical life of the ball screw, and all major manufacturers will provide life charts for their products.

Once these factors are understood and accounted for, and paired with the features and benefits of Machine and Ball Screw Jacks, selecting the right one for your application should be considerably easier.