Category Archives: Medical

Industry Insights at Arm’s Reach

With so many markets, products and changes happening  within the industry, it can be a challenge for designers to know where to find reliable and helpful information . Luckily, we’ve provided two companies who work hard in delivering topnotch, insightful content to help broaden your knowledge of the industry.

You might know Rockwell Automation as the world’s largest company for industrial automation and information, but did you know the company delivers a wide array of white papers, tools and other industrial automation methods, trends and technologies? The Journal from Rockwell  and Our PartnerNetwork™ recently published “The Basics of Ball Screws,” which teaches the key terms, preloading methods and calculations for understanding ball screws.

Rockwell also provides beneficial tools, such as its “Motion Analyzer,” which offers an inertia calculator and compatibility browser for a variety of different products, including linear motion products & systems.

Design World provides daily news in the industry, videos, tech tutorials, webinars and trending topics.According to its website, “Design World is written for engineers by engineers with an emphasis on applying the engineering fundamentals to real world machine design applications across industries including medical, packaging, semiconductor, material handling, and off-highway.” From pneumatics to robotics, the magazine and its digital brand stand as invaluable resources for designers and engineers who wish to be ahead of the curve in the latest industry happenings.

 

Getting the Most out of Your Linear Bearings (Part 2)

In order to get the best performance and life out of your linear bearings, proper lubrication is key.

A lubricant formulated for rolling friction should be used with linear bearings. In applications where operating speeds are low and loads are light,  linear bearings can be used without lubrication at a greatly reduced life. However, it is never recommended to operate linear bearings without lubrication. To protect the highly polished bearing surfaces from corrosion and wear, a lubricant is required.

Where linear speeds are high, a light oil should be used and provision for re-lubrication should be made to avoid operating the bearings dry. For typical applications, a medium-to- heavy oil has good surface adhesion and affords greater bearing protection. Linear bearings 2 inches in diameter and above may use high pressure lithium grease such as Shell Alvania #2 for moderate speed applications. Lubricants containing additives such as molydisulfide or graphite should not be used.

lubrication

Getting the Best out of Your Linear Round Rail Bearings (Part 1)

In order to get the most life and best applications out of your bearings, it’s important to understand the size of the load, how the load will be applied and the length of the stroke. Applying too much weight to a load can significantly reduce the life and efficiency of your bearings. Also, incorrectly distributing the weight on the load can be harmful. In addition to some helpful design considerations, let’s take a look at the load considerations below.

Load ratings are the required design life, shaft hardness and bearing dynamic that affect the load and can be applied to a linear bearing. Two dynamic load ratings are given for each bearing size based on the rotational orientation of the bearing.

The normal load rating is used in applications where the orientation of the ball tracks relative to the load cannot be controlled. The normal load rating is based on a load imposed directly over a single ball track. The normal load rating shown in the specification tables is slightly greater than would be mathematically calculated based on one track loading, because it assumes that the load is shared to some degree by one or more of the adjacent ball tracks.

The maximum load rating assumes that the load is applied midway between two ball tracks as illustrated below. In this orientation the load is distributed over the maximum number of bearing balls.

The normal and maximum load ratings are based on a Rc 60 shaft hardness and a travel life of two million inches. For linear bearing system operating at less than full rated load, the Load-Life Curve may be used to determine the travel life expectancy.

An equivalent load value can be calculated when sizing linear bearings for applications at conditions other than maximum rating.

linear bearings

The New Modular Actuator Calculator Provides Solutions for Bearing Life & Load Considerations

Engineering_Calculator_ThumbnailWhen trying to figure out the load size for an actuator, many engineers find themselves making guesses for the bearing considerations. This is because the bearings are buried within the actuator, which makes it impossible to determine their exact location.

Well, thanks to a new modular actuator calculator, engineers can stop guessing and receive precise load figures. The German-developed calculator works by simply choosing the desired product, entering its load definitions and allowing the tool to calculate the bearing stress and load to determine the bearing life of the product. The results can be viewed in an easy-to-read, printable format.

Now, if you want a particular product to last five years, all you have to do is plug in a few definitions and the calculator will determine the load necessary to achieve that life expectancy.

The free-to-use calculator is compatible with Safari and Internet Explorer. To access this resource, visit here.

3D Printers – Leading the 3rd Industrial Revolution

Late last year, Design World editor, Danielle Collins, posted a great article about the “3rd Industrial Revolution.”

News flash—we’re in it, and 3D printers are leading the way.

Costs are coming down almost as fast as accuracy is increasing. From the industrial creation of finished parts, to the maker movement-led DIY creation of home models, 3D printers are increasingly becoming a more viable technology across different industries and applications.

Collins sorts printers into 3 basic categories, each with unique offerings and challenges:

  • Desktop
    • Generally 10x10x10 or smaller.
    • Low cost kits to fully assembled models.
    • Utilize FreeForm Fabrication, or FFF for printing.
    • Relatively low-tech linear motion solutions; typically round shafts or belt-pulley systems.
    • Prone to alignment issues, such as binding and torque spikes, as well as backlash.
  • Prosumer
    • Print areas around 18x18x18.
    • FFF or Selective Laser Sintering (SLS) methods of printing.
    • SLS offers more material choices including metal, ceramic and plastic.
    • Ideal for part modeling or rapid prototyping.
    • Rely mainly on linear rails and lead screws.
  • Professional/Industrial Grade
    • Print areas of up to a cubic meter.
    • FFF, SLS, Stereolithography (SLA) or in some cases unique, proprietary, deposition methods.
    • Highest resolution (layer thickness) as well as better surface finish and faster build times.
    • High-precision parts, functional prototypes, finished parts and printed electronics.
    • Utilized the most advanced linear motion solutions. But Collins notes that even these might not be accurate enough for some projects, and custom solutions will become necessary.

This handy chart, also from the article, helps lay out the features of all 3 types (click for a clearer view).

NOO-040_Chart

So, what has your experience with 3D printing been? Are you using them at all, investigating the options or already incorporating them as a part of your business?